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Department of Statistics and Computation

Universidad Autónoma Agraria Antonio Narro

25350 Buenavista, Saltillo, Coahuila, MÉXICO.
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ABSTRACT

Given a random singular matrix X, in the present article we find the Jacobian of the trans-
formation Y = X+, where X+ is the More-Penrose inverse of X, both in the general case and
when X is a non-negative definite matrix. Expressions for the densities of the More-Penrose
inverse of the singular Wishart and Pseudo-Wishart matrices are obtained. Similarly, an ex-
pression for the density of the matrix-variate singular T -distribution is proposed. Finally, these
results are applied to the Bayesian inference of the multivariate linear model.

1. INTRODUCTION

The distribution of the inverse of a random matrix plays an important role in Bayesian infer-
ence. Such are the roles of the inverse Wishart, Beta and Dirichlet distributions, see Press
[Sections 8.6.1 and 8.6.2, 1982], Box and Tiao [p.460, 1972] and Xu (1990). In particular, the
inverse Wishart distribution is obtained as the posterior distribution of the covariance matrix
in the inference of the multivariate linear model, when a prior noninformative distribution is
assumed.

∗This article was written while the first author was a Visiting Professor at the Department of Statistics and

O. R. of the University of Granada, Granada, Spain
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Similarly, the inverse Wishart distribution is the natural conjugate prior distribution for the
covariance matrix in a normal distribution (or a multivariate linear model, with normal errors),
in which case this distribution is also obtained as an approximation of the posterior marginal
distribution of the matrix of covariances, see Press [pp. 117, 252-253, 256, 1982]. In all these
cases, it is assumed that the matrix of covariances is positive definite, although this is not
always the case. In order to extend these ideas from the nonsingular to the singular case, it
is necessary to find the distributions of the inverse, which in this case would be those of the
generalised inverse, or the More-Penrose inverse.
It is necessary to determine the distributions of other singular random matrices. In the above-
cited case, firstly, the joint distribution of the errors in the multivariate linear model is a
matrix-variate Normal singular distribution; and secondly, by analogy with the nonsingular
case, the posterior distribution of the parameters of the linear model would be a matrix-variate
singular T -distribution. Several authors have examined these problems, see Uhlig (1994), Dı́az-
Garćıa et al. (1997), Dı́az-Garćıa and Gutiérrez (1997) and Dı́az-Garćıa and Gutiérrez-Jáimez
(2003).
Note that, given an X singular random matrix, its density function can be written as dF

X
(X) =

f
X

(X)(dX), where (dX) denotes the Hausdorff measure, see Dı́az-Garćıa et al. (1997) and
Billingley [p. 247, 1979]. Let us now assume we wish to find the density of Y , defined by
Y = X+, where X+ is the More-Penrose inverse of X (see Section 2), which would be given
by

dF
Y
(Y ) = f

X
(Y +)|J(X → Y )|(dY ).

The problem is reduced to one of calculating the Jacobian |J(X → Y )| and of explicitly defining
the volume element (dY ). One means that has proved very useful, both for the calculation
of Jacobians and for the explicit definition of the Hausdorff measure, is that of the exterior
product, see James (1954), Muirhead [Chapter 2, 1982], Uhlig (1994), Dı́az-Garćıa et al. (1997)
and Dı́az-Garćıa and Gutiérrez (1997).
The present paper extends some results of the above-cited nonsingular case to the singular case.
Specifically, Section 2 introduces the notation necessary for the rest of the study and establishes
some results with reference to the distribution of singular random matrices. Section 3 presents
the Jacobians and the volume elements corresponding to the transformation Y = X+, both for
the case of a general singular random matrix and for that of a non-negative defined X random
matrix. In Section 4, we determine the singular and nonsingular generalised inverse Wishart
and Pseudo-Wishart distributions, both for the central and the noncentral cases. This section
also provides an explicit expression for the density of a matrix-variate singular T -distribution.
Finally, these results are applied to the Bayesian inference of the multivariate linear model.

2. PRELIMINARY RESULTS AND NOTATION

Let L+
m,N (q) be the linear space of all N×m real matrices of rank q ≤ min(N, m) with q distinct

singular values. The set of matrices H1 ∈ Lm,N such that H ′
1H1 = Im is a manifold denoted

Vm,N , called Stiefel manifold. In particular, Vm,m is the group of orthogonal matrices O(m).
Denote Sm, the homogeneous space of m × m positive definite symmetric matrices; S+

m(q),
the (mq − q(q − 1)/2)-dimensional manifold of rank q positive semidefinite m × m symmetric
matrices with q distinct positive eigenvalues.
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Observe that, if X ∈ L+
m,N (q), we can write X as

X1 =







X11
q×q

X12
q×m−q

X21
N−q×q

X11
N−q×m−q







such that r(X11) = q. This is equivalent to the right product of the matrix X with a permuta-
tion matrix Π, see Golub and Van Loan [section 3.4.1, 1996], that is X1 = XΠ. Note that the
exterior product of the elements from the differential matrix dX are not affected by the fact
that we multiply X (right or left) by a permutation matrix, that is, (dX1) = (d(XΠ)) = (dX),
since Π is an orthogonal matrix, see Muirhead [Section 2.1, 1982] and James (1954). Then,
without loss of generality, (dX) will be defined as the exterior product for the differentials
dxij , such that xij are mathematically independent. It is important to note that we will have
Nq+mq−q2 mathematically independent elements in the matrix X ∈ L+

m,N (q), corresponding
to the elements of X11, X12 and X21. Explicitly,

(dX) ≡ (dX11) ∧ (dX12) ∧ (dX21) =
N
∧

i=1

q
∧

j=1

dxij

q
∧

i=1

m
∧

j=q+1

dxij (1)

Similarly, given S ∈ S+
m(q), we define (dS) as

(dS) ≡
q

∧

i=1

m
∧

j=i

dsij (2)

Again, we should note that, for this case, the matrix S can be written as

S ≡







S11
q×q

S12
q×m−q

S21
m−q×q

S22
m−q×m−q






with r(S11) = q.

such that, the number of mathematically independent elements in S are, mq − q(q − 1)/2
corresponding to the mathematically independent elements of S12 and S11. Recall that S11 ∈
Sq, in such a way that S11 has q(q + 1)/2, therefore,

(dS) ≡ (dS11) ∧ (dS12)

Note now that the explicit form for (dX) and (dS) depends on the factorisation (base and
coordinate set) employed to represent X or S. By using the nonsingular part of the decompo-
sition in singular values and the nonsingular part of the spectral decomposition for X and S,
respectively, then:

Proposition 1. [ Singular value decomposition, SVD.] Let X ∈ L+
m,N (q), then there exist

H1 ∈ Vq,N , P1 ∈ Vq,m and D = diag(D11, . . . , Dqq), D11 > · · · > Dqq > 0, such that X =
H1DP ′

1, it is called nonsingular part of the SVD, Rao[p. 42, 1973] and Eaton [p. 58, 1983]. Let
H2 ∈ VN−q,N (a function of H1) and P2 ∈ Vm−q,m (a function of P1) such that H = (H1|H2) ∈
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O(N) and P = (P1|P2) ∈ O(m). Writing by columns, H1 = (h1 · · ·hq), H2 = (hq+1 · · ·hN ),
P1 = (p1 · · · pq) and P2 = (pq+1 · · · pm), we have that

(dX) = 2−q|D|N+m−2q
q

∏

i<j

(D2
ii − D2

jj)(dD)(H ′

1dH1)(P
′

1dP1), (3)

where (dD) ≡
q

∧

i=1

dDii, and

(H ′

1dH1) ≡
q

∧

i=1

N
∧

j=i+1

h′

jdhi and (P ′

1dP1) ≡
q

∧

i=1

m
∧

j=i+1

p′jdpi

define an invariant measure on Vq,N and on Vq,m, respectively, James (1957) Muirhead [Section
2.1.4] (1982) and Farrell (1985).

For a proof see Dı́az-Garćıa et al. (1997).

Proposition 2. [Spectral decomposition.] Let S ∈ S+
m(q), then S = W1LW ′

1, where W1 ∈ Vq,m

and L = diag(L11, . . . , Lqq), L11 > · · · > Lqq > 0, it is called the nonsingular part of the spectral
decomposition. Then

(dS) = 2−q|L|m−q
q

∏

i<j

(Lii − Ljj)(dL)(W ′

1dW1) (4)

where (dL) =
q

∧

i=1

dLii, see Uhlig (1994) and Dı́az-Garćıa and Gutiérrez (1997).

Definition 1. [Matrix-variate Normal Singular Distribution] Let X ∼ NN×m(µ, Σ, Ξ),
with Σ m × m, r(Σ) = r < m or Ξ N × N , r(Ξ) = k < N . This distribution will be called a
matrix-variate normal singular distribution and will be denoted as

X ∼ N k,r
N×m(µ, Σ, Ξ)

omitting the supra-index when r = m and k = N . In addition, its density function is given by

1

(2π)rk/2
(

∏r
i=1 λ

k/2
i

) (

∏k
j=1 δ

r/2
j

) etr
(

−1
2Σ−(X − µ)′Ξ−(X − µ)

)

(5)

H ′
2XP ′

1 = H ′
2µP ′

1

H ′
1XP ′

2 = H ′
1µP ′

2

H ′
2XP ′

2 = H ′
2µP ′

2











a. s. (6)

where A− is a symmetric generalised inverse, λi and δj are the nonzero eigenvalues of Σ and Ξ

respectively. Let H = (H1
...H2) ∈ O(N) and P = (P ′

1

...P ′
2) ∈ O(m) be matrices associated with
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the spectral decomposition of matrices Σ and Ξ respectively with H1 ∈ Vk,N , H2 ∈ VN−k,N , P ′
1 ∈

Vr,m and P ′
2 ∈ Vm−r,m, see Dı́az-Garćıa et al.(1997).

Alternatively, this density can be written as

dF
X

(X) =
1

(2π)rk/2
(

∏r
i=1 λ

k/2
i

) (

∏k
j=1 δ

r/2
j

) exp
(

−1
2Σ−(X − µ)′Ξ−(X − µ)

)

(dX), (7)

where (dX) is the Hausdorff measure, which coincides with that of Lebesgue when it is defined
on the subspace M given by the hyperplane (6), see Dı́az-Garćıa et al.(1997), Cramér [p. 297,
1999] and Billingley [p. 247, 1979]. Explicitly, if q = min(r, k), (dX) would be given by (1)
and/or considering the SVD, (dX) is defined by (3).

Definition 2. [Singular and Nonsingular Wishart and Pseudo-Wishart Distributions.] Let us

suppose that Y ∼ N k,r
N×m(µ, Σ, Ξ), with r(Σ) = r ≤ m, r(Ξ) = k ≤ N and let q =min(r, k),

then the density of S = Y ′Ξ−Y is given by

πk(q−r)/2|L|(k−m−1)/2

2kr/2Γq

[

1
2k

] (

∏r
i=1 λ

k/2
i

) etr
(

−1
2Σ−S − 1

2Ω
)

0F1

(

1
2k; 1

4ΩΣ−S
)

(8)

P2SP ′
2 = P2µ

′Ξ−µP ′
2 a. s. (9)

where S = W1LW ′
1, Σ− is a symmetric generalised inverse of Σ, Ω = Σ−µ′Ξ−µ, Ξ− is a

symmetric generalised inverse of Ξ = Q′Q with Q k × N matrix, r(Q) = k, P ′ΣP = ∆Σ, and

0F1(·) is a hypergeometric function with a matrix argument (see Dı́az-Garćıa et al.(1997).

Again, observe that this density can be written as

dF
S
(S) =

πk(q−r)/2|L|(k−m−1)/2

2kr/2Γq

[

1
2k

] (

∏r
i=1 λ

k/2
i

) etr
(

−1
2Σ−S − 1

2Ω
)

0F1

(

1
2k; 1

4ΩΣ−S
)

(dS), (10)

where (dS) is the Hausdorff measure, which coincides with the Lebesgue measure when the
latter is defined on the manifold S+

m(q). Explicitly, (dS) is given by (2) and/or with spec-
tral factorisation by (4). Moreover, if S has a density of (10), this is denoted by writ-
ing S ∼ Wm(q, k, Σ, Ω) if k ≥ r (N ≥ m) for the case of Wishart distribution, and by
S ∼ PWm(q, k, Σ, Ω) if k < r (N < m) for the case of Pseudo-Wishart distribution.

Let us now consider the linear transformation A
∼

: IRn → IRm, defined by A
∼

(x) = Ax, for

x ∈ IRn, A ∈ IRm×n. For this transformation to be one to one, it is necessary to restrict its
domain to the rank of A′, R(A′) = {x|A′g = x}. Thus, the following definition is obtained:

Definition 3. [More-Penrose inverse.] If A ∈ IRm×n, define the linear transformation A
∼

+
:

IRm → IRn by A
∼

+
(x) = 0 if x ∈ R(A)⊥ and A

∼

+
(x) =

(

A
∼

∣

∣

∣R(A′)

)−1

x if x ∈ R(A). The
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matrix of A
∼

+
is denoted A+ and called the generalised or More-Penrose inverse of A, see

Campbell and Meyer [pp. 8-9, 1979].
Given a matrix A, various methods may be applied to determine its generalised inverse. For
example, if A ∈ L+

m,N (q) and A = H1DP ′
1 is the nonsingular part of the decomposition into

singular values of A, its generalised inverse is given by A+ = P1D
−1H ′

1, see Rao [pp.76-77,
1973].

3. JACOBIANS

In this section, we determine the Jacobian of the transformation Y = X+, both for the singular
rectangular case and for that in which X is a non-negative defined matrix.

Theorem 1. If W = V + with V ∈ S+
m(r). Then

(dW ) = |Dλ|
−2m+r−1(dV ) =

r
∏

i=1

λ2m+r−1
i (dV ), (11)

where V = H1DλH ′
1, is the nonsingular part of the spectral decomposition of V , with Dλ =

diag(λ1, . . . , λr), λ1 > · · · > λr > 0 and H1 ∈ Vr,m.

Proof : Let V = H1DλH ′
1 be the nonsingular part of the spectral decomposition of V , then

W = V + = H1D
−1
λ H ′

1. Then, from Proposition 2, we have

(dV ) = 2−m
r

∏

i=1

λm−r
i

∏

i<j

(λi − λj)(H
′

1dH1) ∧
r

∧

i=1

dλi, (12)

similarly

(dW ) = 2−m
r

∏

i=1

(λ−1
i )m−r

∏

i<j

(λ−1
i − λ−1

j )(H ′

1dH1) ∧
r

∧

i=1

dλ−1
i . (13)

Now, ignoring the sign,

r
∧

i=1

dλ−1
i =

r
∧

i=1

(−1)
dλi

λ2
i

=
r

∏

i=1

λ−2
i

r
∧

i=1

dλi,

and so

(dW ) = 2−m
r

∏

i=1

(λ
−(m−r+2)
i

∏

i<j

(λ−1
i − λ−1

j )(H ′

1dH1) ∧
r

∧

i=1

dλi,

from which

(H ′

1dH1) ∧
r

∧

i=1

dλi = 2m





r
∏

i=1

(λ
−(m−r+2)
i

∏

i<j

(λ−1
i − λ−1

j )





−1

(dW ). (14)

Finally, the result is obtained by substituting (14) in (12). Note that (ignoring the sign),

∏

i<j

(λi − λj)

(λ−1
i − λ−1

j )
=

∏

i<j

λiλj =
r

∏

i=1

λr−1
i .
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Remark 1. Note that if r = m, that is V ∈ Sm, then |Dλ| = |V |, thus obtaining

(dW ) = |V |−(m+1)(dV ),

see, for example, Muirhead [Theorem 2.1.8, p.59, 1982].
This result can easily be extended to the case of a rectangular matrix of incomplete rank, con-
sidering the nonsingular part of the decomposition in singular values instead of the nonsingular
part of the spectral decomposition, and thus

Theorem 2. Let Y = X+, with X ∈ L+
m,N (q). Then

(dY ) = |Dσ|
−2(N+m−q)(dX) =

q
∏

i=1

σ
−2(N+m−q)
i (dX), (15)

where X = H1DσP ′
1, is the nonsingular part of the decomposition in singular values of X, with

Dσ = diag(σ1, . . . , σq), σ1 > · · · > σq > 0, H1 ∈ Vq,N and P1 ∈ Vq,m.

Proof : The demonstration is analogous to that given for Theorem 1, but in this case taking
into account Proposition 1.

4. GENERALISED INVERSE WISHART AND PSEUDO-WISHART DISTRIBUTIONS
AND MATRIX-VARIATE SINGULAR T -DISTRIBUTIONS

Given the matrix S ∼ Wm(q, k, Σ, Ω) (o ∼ PW m(q, k, Σ, Ω)), we now wish to determine
the distribution of U = S+. This distribution is called m-dimensional generalised inverse
Wishart (or Pseudo-Wishart), of rank q, with k degrees of freedom, a scale matrix Σ− ≥ 0 and
noncentrality parameter matrix Ω. Note that, following the notation of Srivastava and Khatri
[p. 72, 1979] and/or Dı́az-Garćıa et al. (1997, when k ≥ r (N ≥ m) the generalised inverse
Wishart distribution (singular or nonsingular) is obtained. Otherwise, the generalised inverse
Pseudo-Wishart distribution (singular or nonsingular) is obtained. These cases are denoted,
respectively, by U ∼ W+

m(q, k + m + 1, Σ−, Ω) and by U ∼ PW+
m(q, k + m + 1, Σ−, Ω).

Theorem 3. Let S ∼ Wm(q, k, Σ, Ω) (or ∼ PW m(q, k, Σ, Ω)) and let U = S+. Then the
density of U is given by

dF
U
(U) =

πk(q−r)/2|DT |
−(k+3m−2q+1)/2

2kr/2Γq

[

1
2k

] (

∏r
i=1 λ

k/2
i

) etr
(

−1
2Σ−U+ − 1

2Ω
)

0F1

(

1
2k; 1

4ΩΣ−U+
)

(dU), (16)

where U = H1DT H1 s the nonsingular part of the spectral decomposition of U , with DT =
diag(t1, . . . , tq), t1 > · · · > tq > 0, H1 ∈ Vq,m and the measure (dU) is explicitly given by

(dU) = 2−m
q

∏

i=1

tm−q
i

∏

i<j

(ti − tj)(H
′

1dH1) ∧
q

∧

i=1

dti. (17)
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Proof : From U = H1DT H1 the proof is immediate from equation (10) and Theorem 1.
This distribution and some of its properties have been studied by various authors, for the
central Wishart nonsingular distribution (that is when Ω = 0, m ≤ N = k and q = r = m ),
see for example Press [Section 5.2, 1982], Box and Tiao [p.460, 1973] and Gupta and Nagar
[Section 3.4, 2000]. By adopting the notation of Box and Tiao [p.460, 1973] the following is
obtained:

Definition 1. [Generalised Inverse Wishart and Pseudo-Wishart Distributions]Let U ∈ S+
m(q)

be a random matrix. U is said to have a Wishart or Pseudo-Wishart inverse-generalised non-
central distribution with ν degrees of freedom, a scale matrix G and a noncentrality parameter
matrix Ω, this fact being denoted by U ∼ W+

m(q, ν, G, Ω) and by U ∼ PW+
m(q, ν, G, Ω) respec-

tively, if the density function is given by

dF
U
(U) =

π(ν+m−1)(q−r)/2
(

∏r
i=1 δ

(ν+m−1)/2
i

)

2(ν+m−1)r/2Γq

[

1
2(ν + m − 1)

]

|DT |(ν+4m−2q)/2
etr

(

−1
2GU+ − 1

2Ω
)

0F1

(

1
2(ν + m − 1); 1

4ΩGU+
)

(dU),

(18)
where Ω = Gµ′Ξ−µ, U = H1DT H1 is the nonsingular part of the spectral decomposition of U ,
with DT = diag(t1, . . . , tq), t1 > · · · > tq > 0, H1 ∈ Vq,m; G = R1DδR

′
1 is the nonsingular

part of the spectral decomposition of G, with Dδ = diag(δ1, . . . , δq), R1 ∈ Vq,m, and where the
measure (dU) is explicitly given by (17).
Note that if Ω = 0 we obtain the central (singular and nonsingular) generalised inverse Wishart
and Pseudo-Wishart distributions, whose density is given by

dF
U
(U) =

π(ν+m−1)(q−r)/2
(

∏r
i=1 δ

(ν+m−1)/2
i

)

2(ν+m−1)r/2Γq

[

1
2(ν + m − 1)

]

|DT |(ν+4m−2q)/2
etr

(

−1
2GU+

)

(dU) (19)

We now wish to determine an expression for the density of a matrix-variate singular T -
distribution. When T is nonsingular, both in the central and in the noncentral cases, this
distribution has been studied by various authors, including Box and Tiao [Section 8.4.3, 1973],
Press [Section 6.2.3, 1982] and Gupta and Nagar [Chapter 4, 2000]. By considering the ex-
pression for the density of the matrix-variate T , given by Press [p. 139, 1982] equation (6.2.7)
and the notation of Box and Tiao [p. 441, 1972] the following result is obtained:

Theorem 4. Let Y ∼ MT N×m(µ, Σ, Ξ, ν), with Σ m × m, r(Σ) = r < m or Ξ N × N ,
r(Ξ) = k < N . This is called the matrix-variate singular T -distribution and is denoted

Y ∼ MT k,r
N×m(µ, Σ, Ξ, ν)

8



Omitting the supra-indices when r = m and k = N . Its density function is given by

dF
Y
(Y ) =

Γr

[

1
2(ν + k + r − 1)

]

r
∏

i=1

λ
(ν+r−1)/2
i

πrk/2Γr

[

1
2(ν + r − 1)

]

k
∏

j=1

δ
r/2
j

∣

∣Σ + (Y − µ)′Ξ−(Y − µ)
∣

∣

−(ν+k+r−1)/2
(dY ),

(20)
where A− is a symmetric generalised inverse, λi y δj are the non-null eigenvalues of S and Ξ
respectively, and (dY ) is the Hausdorff measure (see Definition 1).

Proof: The proof is parallel to that given for the normal case, see Dı́az-Garćıa et al.(1997),
or Dı́az-Garćıa and Gutiérrez-Jáimez (2003).

5. SOME APPLICATIONS

In this section, the Bayesian inference is performed on Θ and Σ in the linear model of the
singular multivariate full rank model defined by:

Y
n×m

= X
n×k

Θ
k×m

+ ε
n×m

, (21)

where p(ε|Θ, Σ) ≡ N n,r
n×m(0, Σ ⊗ In) with Σ ≥ 0, r(Σ) = r ≤ m < n and r(X) = k.

Let S(Θ) be the symmetric matrix

S(Θ) = (Y − XΘ)′(Y − XΘ)

= (Y − Θ̂)′(Y − Θ̂) + (Θ − Θ̂)′X ′X(Θ − Θ̂)

= A + (Θ − Θ̂)′X ′X(Θ − Θ̂)

with A = (Y − Θ̂)′(Y − Θ̂) y Θ̂ = X+Y = (X ′X)−1X ′Y is the estimator of least squares of Θ.
From these observations, and from expression (7), the likelihood function can be written as

L(Θ, Σ|Y ) ∝ dP (ε|Θ, Σ)(dΘ)(dΣ)

∝
∏r

i=1 λ
−n/2
i etr

(

−1
2Σ+S(Θ)

)

(dΘ)(dΣ),
(22)

where λi, i = 1, 2, . . . , r, are the non-null eigenvalues of Σ.
For the joint prior distribution of the parameters (Θ, Σ), assume that Θ and Σ are approx-
imately independent, that is, p(Θ, Σ)

.
= p(Θ)p(Σ) and Θ is locally uniform, thus p(Θ) ∝

constant. We still have to determine the joint prior distribution of the mr − r(r − 1)/2
mathematically-independent elements in Σ. For this purpose, and proceeding in an analogous
way to Box and Tiao [Section 8.2.2,1972], for Theorem 1 we find that

dP (Σ) ∝
r

∏

i=1

λ
−(2m−r+1)/2
i (dΣ).

From which

dP (Θ, Σ) ∝
r

∏

i=1

λ
−(2m−r+1)/2
i (dΘ)(dΣ). (23)
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Thus, the joint posterior distribution of the parameters (Θ, Σ) is

dP (Θ, Σ|Y ) ∝ L(Θ, Σ|Y )p(Θ, Σ)(dΘ)(dΣ)

∝
∏r

i=1 λ
−(n+2m−r+1)/2
i etr

(

−1
2Σ+S(Θ)

)

(dΘ)(dΣ).
(24)

By applying (19) we can integrate (24) with respect to Σ ∈ S+
m(r). Thus, assuming that

S(Θ) > 0 we find that the marginal posterior distribution of Θ is

dP (Θ|Y ) ∝ |S(Θ)|−(n−m+r)/2 (25)

Analogously, by integrating (24), now with respect to Θ ∈ L+
m,k(r), and by applying (20), we

find that the marginal posterior distribution of Σ is

dP (Σ|Y ) ∝
r

∏

i=1

λ
−(n+2m−r−k+1)/2
i etr

(

−1
2Σ+A

)

(dΣ) (26)

It is also possible to determine the conditional posterior distribution of Θ given Σ, which is
given by

dP (Θ|Σ, Y ) =
p(Θ, Σ|Y )

p(Σ|Y )
(dΘ) ∝

etr
(

−1
2Σ+S(Θ)

)

etr
(

−1
2Σ+A

) (dΘ),

from which we obtain that

dP (Θ|Σ, Y ) ∝ etr
(

−1
2Σ+(Θ − Θ̂)′X ′X(Θ − Θ̂)

)

(dΘ) (27)

Finally, it is possible to find the conditional posterior distribution of Σ given Θ as

dP (Σ|Θ, Y ) =
p(Θ, Σ|Y )

p(Θ|Y )
(dΣ) ∝

∏r
i=1 λ

−(n+2m−r+1)/2
i etr

(

−1
2Σ+S(Θ)

)

|S(Θ)|−(n−m+r)/2
(dΣ)

from which

dP (Σ|Θ, Y ) ∝
r

∏

i=1

λ
−(n+2m−r+1)/2
i etr

(

−1
2Σ+S(Θ)

)

(28)

In summary, the following result is obtained.

Theorem 5. Given the general multivariate linear model (21), and assuming a noninformative
prior joint distribution for the parameters (Θ, Σ), the following holds:
(i) The joint density function of (Θ, Σ) is given by

dP (Θ, Σ|Y ) =
|X ′X|r/2 ∏r

j=1 δ
(ν+2r−m−1)/2
j

2(ν+k+2r−m−1)m/2πkr/2Γr

[

1
2(ν + 2r − m − 1)

]

∏r
i=1 λ

(ν+k+2m)/2
i

etr
(

−1
2Σ+

(

A + (Θ − Θ̂)′X ′X(Θ − Θ̂)
))

(dΘ)(dΣ),

where δj, j = 1, 2, . . . , r, are the non-null eigenvalues of A.
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(ii) Θ|Y ∼ MT k,r
k×m(Θ̂, (X ′X)−1, A, ν), (iii) Θ|Σ, Y ∼ N k,r

k×m(Θ̂, Σ, (X ′X)−1), (iv) Σ|Y ∼
W+

m(r, ν, A) and (v) Σ|Θ, Y ∼ W+
m(r, ν + k, S(Θ)), with ν = n − (k + r) + 1.

Remark 2. The above results can easily be extended to the case of the singular multivariate
linear model of non-full rank, that is, when r(X) = h < k. In general terms, it is sufficient to
make the following changes to the previous results; k for h, (X ′X)−1 for (X ′X)+ and |X ′X|
for

∏h
i=1 αi, where αi are the non-null eigenvalues of X ′X. Moreover, in this case, Θ̂ is any

solution to the system of normal equations, X ′XΘ̂ = X ′Y , which in particular can be followed
by considering Θ̂ = X+Y .
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